Characterization of a Novel Putative S-Adenosylmethionine Decarboxylase-Like Protein from Leishmania donovani

نویسندگان

  • Saurabh Pratap Singh
  • Pragati Agnihotri
  • J. Venkatesh Pratap
چکیده

In addition to the S-adenosylmethionine decarboxylase (AD) present in all organisms, trypanosomatids including Leishmania spp. possess an additional copy, annotated as the putative S-adenosylmethionine decarboxylase-like proenzyme (ADL). Phylogenetic analysis confirms that ADL is unique to trypanosomatids and has several unique features such as lack of autocatalytic cleavage and a distinct evolutionary lineage, even from trypanosomatid ADs. In Trypanosoma ADL was found to be enzymaticaly dead but plays an essential regulatory role by forming a heterodimer complex with AD. However, no structural or functional information is available about ADL from Leishmania spp. Here, in this study, we report the cloning, expression, purification, structural and functional characterization of Leishmania donovani (L. donovani) ADL using biophysical, biochemical and computational techniques. Biophysical studies show that, L. donovani ADL binds S-adenosylmethionine (SAM) and putrescine which are natural substrates of AD. Computational modeling and docking studies showed that in comparison to the ADs of other organisms including human, residues involved in putrescine binding are partially conserved while the SAM binding residues are significantly different. In silico protein-protein interaction study reveals that L. donovani ADL can interact with AD. These results indicate that L. donovani ADL posses a novel substrate binding property and may play an essential role in polyamine biosynthesis with a different mode of function from known proteins of the S-adenosylmethionine decarboxylase super family.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducers.

The polyamine biosynthetic enzyme, S-adenosylmethionine decarboxylase (ADOMETDC) has been advanced as a potential target for antiparasitic chemotherapy. To investigate the importance of this protein in a model parasite, the gene encoding ADOMETDC has been cloned and sequenced from Leishmania donovani. The Delta adometdc null mutants were created in the insect vector form of the parasite by doub...

متن کامل

Leishmania donovani polyamine biosynthetic enzyme overproducers as tools to investigate the mode of action of cytotoxic polyamine analogs.

A number of anticancer and antiparasitic drugs are postulated to target the polyamine biosynthetic pathway and polyamine function, but the exact mode of action of these compounds is still being elucidated. To establish whether polyamine analogs specifically target enzymes of the polyamine pathway, a model was developed using strains of the protozoan parasite Leishmania donovani that overproduce...

متن کامل

Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids.

The production of polyamines has been shown to be an effective target for a drug against the West African form of sleeping sickness caused by Trypanosoma brucei gambiense. T. brucei belongs to the group of protozoan parasites classed as trypanosomatids. Parasitic species of this group are the causative agents of various tropical diseases besides African sleeping sickness, e.g. Chagas' disease (...

متن کامل

Characterization of Leishmania donovani Aquaporins Shows Presence of Subcellular Aquaporins Similar to Tonoplast Intrinsic Proteins of Plants

Leishmania donovani, a protozoan parasite, resides in the macrophages of the mammalian host. The aquaporin family of proteins form important components of the parasite-host interface. The parasite-host interface could be a potential target for chemotherapy. Analysis of L. major and L. infantum genomes showed the presence of five aquaporins (AQPs) annotated as AQP9 (230aa), AQP putative (294aa),...

متن کامل

Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drugs.

The glyoxalase system is a ubiquitous detoxification pathway that protects against cellular damage caused by highly reactive oxoaldehydes such as methylglyoxal which is mainly formed as a by-product of glycolysis. The gene encoding GLOII (glyoxalase II) has been cloned from Leishmania donovani, a protozoan parasite that causes visceral leishmaniasis. DNA sequence analysis revealed an ORF (open ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013